보건의료 대표 뉴스 - 자매지 일간보사
의학신문
상단여백
HOME 의원·병원 개원가
국내 개발 인공지능, 골절 진단 정확도 높아건대병원 정석원 교수,“정형외과 분야 질환 특이적 인공지능 진단력 입증”

[의학신문·일간보사=김현기 기자] 국내 연구진에 의해 개발된 딥러닝 기반의 인공지능 모델이 골절 진단에서 높은 정확도를 보여 주목된다.

 건국대학교병원은 최근 정형외과 정석원 교수팀이 개발한 인공지능 모델이 근위 상완골(팔 위쪽 어깨뼈) 골절의 감별 능력 평가에서 높은 정확도를 나타냈다고 밝혔다.

 

 정석원 교수<사진>팀은 1891명의 환자의 근위상완골 X-ray 필름을 기반으로 인공지능 모델을 사용해 골절을 진단했다.

 이 결과 정확도가 96%(민감도 0.99, 특이도 0.97)에 달했으며, 골절 타입을 분류하는데 있어서도 일반 정형외과 의사보다 뛰어난 정확도를 보여줬다는 것.

 특히 정 교수팀은 골절타입을 상완골두의 대결절, 외과적 경부, 삼분골절, 사분골절 등 4가지로 분류한 정확도도 측정했다. 이 결과 정형외과 전문의와 비슷하거나 그 보다 높은 정확도를 보였다.

 정 교수는 “인공지능이 골절 타입 분류에서는 어깨 관절 전문의와 비슷하거나 약간이지만 오히려 더 뛰어난 능력을 보였다”며 “특히 골절형태가 복잡한 경우 더 뛰어난 능력을 보여줬다”고 설명했다.

 정형외과 외상 분야에서 딥 러닝 알고리즘을 이용한 진단 능력에 대한 연구는 지난 2017년 12월 스웨덴 연구팀에서 처음 보고한 후 세계에서 2번째다.

 정 교수는 “정형외과 분야에서 질환 특이적으로 인공지능이 높은 정확도의 진단 능력을 입증한 것은 세계 최초”라고 연구 의의를 밝혔다.

 이번 연구는 건대병원 정 교수와 KIST 바이오닉스 연구단의 김영준 박사, 경북대병원, 명지병원, 강원대병원, 경찰병원, 서울성모병원, 동아대병원이 함께 참여했으며, 인공지능 모델 개발에는 아이피부과 한승석 원장이 참여했다.

 정 교수는 “환자 진단에 있어 X-ray 필름이 진단의 기본이 되는 정형외과 외상 영역에서 인공지능 모델의 사용 가능성을 확인한 매우 의미있는 연구”라며 “외상 환자에서 신속하고 정확한 진단을 가능하게 할 수 있을 것으로 기대된다”고 말했다.

 한편 이번 연구 결과는 국제학술지 ‘Acta Orthopaedica에 지난 3월 게재됐다.

김현기 기자  khk@bosa.co.kr

<저작권자 © 의학신문, 무단 전재 및 재배포 금지>

김현기 기자의 다른기사 보기
기사 댓글 0
전체보기
첫번째 댓글을 남겨주세요.
여백
여백
포토뉴스
여백
여백
Back to Top